
June 2012

IS
SN

 18
66

-5
70

5
		

w

w
w

.te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fr

ee
 d

ig
ita

l v
er

si
on

		

pr
in

t v
er

si
on

 8
,0

0
€	

pr
in

te
d

in
 G

er
m

an
y

18

Test Center of Excellence
How can it be set up?

The Magazine for Professional Testers

14 The Magazine for Professional Testers www.testingexperience.com

Managing Technical Test Debt

by Bob Galen

I’ve been programming and testing for over a quarter of a cen-
tury. One of the things I like about the agile methods is that they
gave a name to something that developers always had to deal
with – Technical Debt. Everyone knew about it, but not having a
representative term sort of lessened its impact or import. It was
just so easy to ignore if we didn’t know what to call it.

You know what I mean…

Technical debt is that sinking feeling that developers have when
trying to change old, brittle, poorly maintained code. When they
draw straws and the short straw gently prays that they can get
over just one more duct-taped repair to the codebase without it
falling apart. Where team members mumble softly to themselves
during a build – please, please don’t fail.

Fast forward to the agile methodologies and we’ve quantified
it. We try to attack it with other techniques like Test Driven De-
velopment (TDD) and refactoring and speak about incremental
development, working in end-to-end slices, where we can mitigate
technical debt and properly clean up after ourselves.

In this article I want to shift the perspective from development or
code-centric technical debt and draw a correlation between it and
testing. You see, I think testers and software testing suffer from
the same sort of problems, but nobody is really talking about it
in the same way. I want to introduce the term Technical Test Debt
(TTD) as the testing equivalent to technical debt – so let’s explore
that notion a bit further.

Technical Test Debt

Test debt is more broadly nuanced than its development coun-
terpart. The most direct comparison is to test cases that fall out
of repair. I’ve always felt that test cases are the testing equivalent
to lines of code from a deliverable perspective. Additionally, they
both have similar design and creation characteristics.

So, technical test debt can be created where testers have failed
to keep their test case documentation (assuming manual in this
case) up-to-date with the evolution of the product or project. But
that’s not the only contributor to TTD. Here’s a list that defines

some of the testing activities and/or artifacts that, if done poorly
or deferred, inevitably begin to erode the testing integrity of a
software project –

TTD in Artifacts
▪▪ Undefined or unkempt test cases – dated, not matching

current software functionality
▪▪ Badly executed exploratory testing that kept poor documen-

tation surrounding session results
▪▪ Lack of collaborative test design – strategies for testing chal-

lenging project details are lost or non-existent
▪▪ Lack of collaborative user story writing w/o acceptance tests
▪▪ Lack of acceptance tests or user story maintenance and ar-

chival

TTD in Automation
▪▪ Badly designed test automation – prone to break, not tolerant

of application changes w/o large-scale maintenance; hard
to extend for new functionality

▪▪ Not keeping up with test automation maintenance – either
at a framework or test case perspective as the AUT evolves

▪▪ Automated application coverage actually declining over time

TTD in Collaboration and Support
▪▪ Developers not doing their part in keeping up with quality

work (unit testing, design focus, inspection focus, and an
overall quality focus) within the team

▪▪ Ratio issues (and the team not doing their part) – potentially
agile teams without or with insufficient numbers of testers
– and the team not able or willing to pick up the slack

TTD Commitment to Quality
▪▪ Tests that aren’t run during each sprint or iteration due to a

lack of time or because of planned risk-based testing
▪▪ Deferred major test intervals; more focused towards non-

functional tests
▪▪ Testers aren’t even assigned to agile teams
▪▪ Not taking a “whole team” view towards quality and invest-

ing in code reviews and inspections, root cause analysis, and
continuous improvement

15The Magazine for Professional Testerswww.testingexperience.com

I’ve categorized them into areas just to focus the discussion.
There’s nothing special about the categorization, nor do I consider
the list to be exhaustive – meaning, I suspect there are “other”
kinds of test debt out there to worry about.

So, technical test debt is often the case where we’ve become lazy
in our tidying up of our testing artifacts and activities of all kinds.
That laziness can literally be just that, team members who ignore
this work. The debt can also be driven by other factors, which I’ll
explore next.

Root Causes

TTD primarily happens because of several factors; probably lack
of time being the most prevalent. Usually there are far more
developers on agile projects than testers and this can create a
natural skew in the teams’ attention away from quality factors
and mitigating TTD.

Another factor is driven from the business side. Quite often Prod-
uct Owners and other stakeholders struggle with the true cost
of software development. They like to consider only initial coding
costs including minimal or initial testing in their views. Beyond
this, they often try to ignore debt, whether software or TTD, as
being irrelevant or a nuisance to the business – being purely
something for the team to resolve on their own. So business fund-
ing and prioritization can be the inhibitor in this case.

There is another, much more subtle factor that can’t be blamed
on “them” or on leadership. One part of it is certainly skill based.
Team members may simply not be trained in solid testing practices
and the “why” behind managing TTD. Another part, however, is
centered on the teams’ overall commitment to using professional
testing practices in their delivery of solid code. This is the sort of
laziness I referred to earlier and it segues quite nicely into a similar
problem in the agile development community.

Testing Craftsmanship

Along with others, ‘Uncle’ Bob Martin has recently been champion-
ing the notions of software craftsmanship and professionalism
with respect to software development. I believe the same notions
apply to our craft of testing.

At some fundamental level we, the testers within agile teams,
allow TTD to creep into our projects. We don’t make it visible
to our teams and our stakeholders and we allow it to increase.
While it frustrates us and reduces our overall productivity, we
would rather choose to live with it as a normal course of events.

I guess an equivalent in software is developers hacking their code.
Sure, it works now, but it incrementally makes everyone’s job
harder over time. And inevitably the team becomes less productive
and creative; and from a business perspective – less competitive.

So the prime directive in battling TTD surrounds your resolve to
do things right the first time. To increase your professionalism to
not create it or, at the very least, make the compromises visible
to your team and your agile stakeholders so that they can make
a decision on how much is “good enough”.

Exploring TTD Specifics

Now I want to go through the four core areas of technical test
debt. Exploring each more fully in turn and looking more towards
the specific drivers in each case while making recommendations
how mature agile teams should defend against or battle against
these debts.

If you recall, the four core TTD areas are:
1.	 Artifacts
2.	 Automation
3.	 Collaboration and Support
4.	 Commitment to Quality

Let’s explore each in turn –

Artifacts

This is one of the more prevalent cases of TTD in many agile teams
– primarily because the testers on the teams are usually viewed
as being independently responsible for testing work – that work
being clearly outside the whole teams’ purview. There’s an inter-
esting anti-pattern I’ve seen where the teams are very focused on
design and working code – even the quintessential sprint review
being primarily focused on working code. Rarely does the team
make their testing efforts transparent in the review. I think this
is a huge mistake.

One place to turnaround this TTD problem area starts in sprint
planning – asking teams to better represent test work in the
same way that they represent designs and code. I’d even like to
see the teams’ Done-Ness requirements expanded to include TTD
implications – ensuring it gets the right level of transparency.

Beyond this, the whole teams need to understand the value of their
testing artifacts – of writing test cases, creating scripts, logging
session results from exploratory testing sessions, etc. It’s not a
question of wasting time or being “un-agile”, but more so focusing
on creating appropriately leveled and sufficient documentation
so that further testing can be easily quantified, repeated, and au-
tomated. Don’t view this as waste or gold–plating. Instead, these
are simply solid, context-based, and professional test practices.

And finally, show these results in your sprint reviews as they are
part of your “working code” deliverables, and they should be
exposed, highlighted, and appreciated!

Automation

Very few “entry level” agile teams have high degrees of test au-
tomation in place when they initially adopt the methodologies.
Usually, they’re dealing with legacy code of varying degrees of
quality, a somewhat under-maintained repository of manual
test cases, and some bits of UI-based automation that needs a
lot of care and feeding. This represents their testing coverage for
their application set.

Quite often this creates a tenuous situation where these teams
and their customers or Product Owners minimize the importance
of test automation. Instead the testers are simply consumed with
mostly manually testing each sprint’s results – so there is never
the time for creating or maintaining automation.

16 The Magazine for Professional Testers www.testingexperience.com

A frequent mistake in these contexts is assuming that only the
testers can write test automation. Nothing could be further from
the truth! Establishing a team-based culture where literally any-
one can write automation is a start to handling this debt.

Addressing automation debt is a simple exercise. It begins with
the product backlog and the Product Owner’s commitment to
beating down their TTD. In this case, automating all new features
is a great way to start – so that you don’t continue to dig yourself
deeper in debt.

Beyond new feature stabilization, you’ll want to continue to in-
crease your automation infrastructural investment and automa-
tion coverage. The truth is that it’s your safety net for catching
issues as you move more iteratively and quickly. So the team
should look for high priority automation targets in their legacy
codebase and place stories in the backlog for automating them.

Often organizations will reserve a percentage of their backlogs
for this sort of activity – say 10-20% depending upon how much
debt they’re trying to clean up. The key point is to stay committed
to automation until you hit your debt reduction targets.

Collaboration and Support

As I said above in the automation section, the business clearly
needs to take a stand fighting TTD. It’s as simple as that. If the
business won’t support the team’s efforts controlling TTD, then it
will continue to grow and incrementally undermine the effective-
ness of the team. However, it goes beyond simple business sup-
port. The teams themselves need to play a strong role in helping
stakeholders understand, quantify, estimate level of effort, and
then effectively execute TTD reduction efforts.

How?

It begins with planning, both at the release and sprint levels,
within the product backlog. Teams need to define backlog items or
user stories that clearly target the debt. And you can’t simply come
to the business and ask to fix five years’ worth of TTD all at once.

You need to collaborate with them; identifying critical areas and
partnering with the business in prioritization. You also need to ex-
plain the impacts in terms they can understand – defect exposure,
maintainability limitations, new feature development inhibition,
and performance reductions are just a few relevant focus areas.

In addition, you need to articulate a clear strategy regarding TTD.
It can’t simply be statements like – “we’re totally broken… and
we need to fix everything now…”. Instead you need to define a
thoughtful strategy and make recommendations that connect
to ongoing business strategies. For example, your strategy might
align in this way –

▪▪ Initially stopping incremental TTD increases (stopping the
insanity)

▪▪ Establishing baselines for improvement, quarterly targets
that align with the existing product roadmap

▪▪ Incrementally, sprint over sprint and release over release,
quantify improvement focus points via user stories with
clear scope and clear acceptance tests

▪▪ Demonstrating the team’s internal commitment to improve-
ment at Sprint Reviews – showing results and improvement
data trending wherever possible

This sort of holistic game planning, high degrees of transparency,
and alignment to your specific challenges and business context
goes a long way in gaining business level trust and buy-in.

Commitment to Quality

I should have placed this issue first in the list, as I fundamentally
think that teams have forgotten their central agile commitment
to quality in high TTD environments. Perhaps a strong contributor
to this is the general lack of organizational understanding of the
dynamics of software quality and software testing.

The commitment to quality doesn’t magically appear within every
agile team. It needs to be coached and supported within the team
by leadership. In this case, I believe it’s fostered and developed
by a top-down focus. Functional leadership, Scrum Masters, and
Product Owners need to understand that they have a respon-
sibility for delivering high quality results. That it’s not simply a
slogan, but the real truth in the organization. That leadership
“means what they say”.

And this isn’t a simple and narrow view towards quality. No!
It’s a broad view that focuses on inspections of design and code
as a collaborative cornerstone of developing quality products.
A mindset of testing as a broad and varied activity – executed
by professionals who understand the nuance of functional and
non-functional testing. And leadership that also understands
the returns that an investment in test automation can deliver
– both in test coverage but also in allowing for design and code
change nimbleness.

I have a personal test for many organizations –
▪▪ Do your developers willingly test when their team needs it?
▪▪ Or develop extensive automation hooks as part of the design

process?
▪▪ Or passionately construct unit and functional automation

by pairing with their test colleagues?
▪▪ Essentially, do they view all quality practices as an active part

of their getting their (coding) job done?

Not by direction or obligation, but because they’ve bought into
the value of quality up-front. If your answer is yes, then you’ve
fostered a whole-team view towards quality commitment. If not…
then you’ve still got some work to do.

Wrapping Up

Chris Sharpe is an active agile coach out of Portland, Oregon. At
the 2009 Pacific Northwest Software Quality Conference he pre-
sented a paper on Managing Software Debt. In his presentation
he referred to TTD as Quality Debt, while more pervasively look-
ing at the debt challenge beyond development-centric technical
debt and TTD – instead viewing it systemically within software
projects. I mention it because I think Chris has gleaned the true
nature of the software debt problem. It’s broadly nuanced across
all software development activity and an anti-pattern standing
between agile teams and their true potential.

Another aspect to this is the serious role that leadership plays
in “debt management”. I spent several years as a Director of De-
velopment in a fairly mature agile shop. I was also their agile
evangelist and the sponsor for agile and lean focused continuous
improvement.

17The Magazine for Professional Testerswww.testingexperience.com

I had a habit of emphasizing quality and doing things right in
almost every conversation I held with the team. I felt that for
every ten conversations I had, I needed to emphasize craftsman-
ship, refactoring, proper testing, and other quality practices in
nine of them.

Why?

Because it was incredibly easy for my agile teams to get the wrong
impression regarding an effective quality balance, and fall back
into their pre-agile bad practices of giving quality lip service.

For example, thinking that time was a more important variable
for a project. Or to forget that they were empowered to “stop the
line” and fix foundational issues. They had been programmed for
years in traditional management and development approaches
that rarely served quality the way they should have. I felt that I had
to break through these historic habits and patterns with a strong
message – shared consistently, clearly, deliberately, and often. I
encourage all of you to do the same in your renewed commit-
ment towards recognizing and eradicating Technical Test Debt!

I hope you found these thoughts minimally useful, and I encour-
age you to “face your debt”. Thanks for reading,

Bob.

Bob Galen
is a VP and Agile Coach at
Deutsche Bank Global Tech-
nologies in Cary North Ca-
rolina. He’s also President of
RGCG, LLC a technical con-
sulting company focused to-
wards increasing agility and
pragmatism within software
projects and teams. He has
over 25 years of experience as
a software developer, tester,
project manager and leader.

Bob regularly consults, writes and is a popular speaker
on a wide variety of software topics. He is also the author
of the book Scrum Product Ownership – Balancing Value
from the Inside Out. He can be reached at bob@rgalen.com

> biography

Follow us @te_mag

